BALDOR • RELIANCE II

Integral Horsepower AC Induction Motors

Installation & Operating Manual

2/09 MN400

Any trademarks used in this manual are the property of their respective owners.

Table of Contents

Section 1	
General Information	1-1
Overview	1-1
Limited Warranty	1-1
Safety Notice	1-1
Receiving	1-2
Handling	1-2
Storage	1-3
Removal From Storage	1-4
Section 2	
Installation & Operation	2-1
Overview	2-1
Location	2-1
Mounting	2-1
Alignment	2-1
Doweling & Bolting	2-2
Guarding	2-2
Power Connection	2-2
Conduit Box	2-2
AC Power	2-2
Rotation	2-3
First Time Start Up	2-4
Coupled Start Up	2-4
Jogging and Repeated Starts	2-4
Section 3	
Maintenance & Troubleshooting	3-1
General Inspection	3-1
Relubrication & Bearings	3-1
Type of Grease	3-1
Relubrication Intervals	3-1
Relubrication Procedure	3-3
Troubleshooting Chart	3-4
Suggested bearing and winding RTD setting guidelines	3-5

ii Table of Contents MN400

Overview

This manual contains general procedures that apply to Baldor Motor products. Be sure to read and understand the Safety Notice statements in this manual. For your protection, do not install, operate or attempt to perform maintenance procedures until you understand the Warning and Caution statements. A Warning statement indicates a possible unsafe condition that can cause harm to personnel.

A Caution statement indicates a condition that can cause damage to equipment.

Important:

This instruction manual is not intended to include a comprehensive listing of all details for all procedures required for installation, operation and maintenance. This manual describes general guidelines that apply to most of the motor products shipped by Baldor. If you have a question about a procedure or are uncertain about any detail, Do Not Proceed. Please contact your Baldor distributor for more information or clarification.

Before you install, operate or perform maintenance, become familiar with the following:

- NEMA Publication MG-2, Safety Standard for Construction and guide for Selection, Installation and Use of Electric Motors and Generators.
- The National Electrical Code
- Local codes and Practices

Limited Warranty

www.baldor.com/support/warranty standard.asp

Safety Notice: This equipment contains high voltage! Electrical shock can cause serious or fatal injury. Only qualified personnel should attempt installation, operation and maintenance of electrical equipment.

Be sure that you are completely familiar with NEMA publication MG-2, safety standards for construction and guide for selection, installation and use of electric motors and generators, the National Electrical Code and local codes and practices. Unsafe installation or use can cause conditions that lead to serious or fatal injury. Only qualified personnel should attempt the installation, operation and maintenance of this equipment.

WARNING: Do not touch electrical connections before you first ensure that power has been disconnected.

Electrical shock can cause serious or fatal injury. Only qualified personnel should attempt the

installation, operation and maintenance of this equipment.

WARNING: Disconnect all electrical power from the motor windings and accessory devices before

disassembly of the motor. Electrical shock can cause serious or fatal injury.

WARNING: Be sure the system is properly grounded before applying power. Do not apply AC power before

you ensure that all grounding instructions have been followed. Electrical shock can cause serious or fatal injury. National Electrical Code and Local codes must be carefully followed.

WARNING: Avoid extended exposure to machinery with high noise levels. Be sure to wear ear protective

devices to reduce harmful effects to your hearing.

WARNING: Surface temperatures of motor enclosures may reach temperatures which can cause discomfort

or injury to personnel accidentally coming into contact with hot surfaces. When installing, protection should be provided by the user to protect against accidental contact with hot surfaces.

Failure to observe this precaution could result in bodily injury.

WARNING: This equipment may be connected to other machinery that has rotating parts or parts that are

driven by this equipment. Improper use can cause serious or fatal injury. Only qualified

personnel should attempt to install operate or maintain this equipment.

WARNING: Do not by-pass or disable protective devices or safety guards. Safety features are designed to

prevent damage to personnel or equipment. These devices can only provide protection if they

remain operative.

WARNING: Avoid the use of automatic reset devices if the automatic restarting of equipment can be

hazardous to personnel or equipment.

WARNING: Be sure the load is properly coupled to the motor shaft before applying power. The shaft key

must be fully captive by the load device. Improper coupling can cause harm to personnel or

equipment if the load decouples from the shaft during operation.

WARNING: Use proper care and procedures that are safe during handling, lifting, installing, operating and

maintaining operations. Improper methods may cause muscle strain or other harm.

WARNING: Thermostat contacts automatically reset when the motor has slightly cooled down. To prevent

injury or damage, the control circuit should be designed so that automatic starting of the motor is

not possible when the thermostat resets.

MN400 General Information 1-1

Safety Notice Continued

WARNING: UL Listed motors must only be serviced by UL Approved Authorized Baldor Service Centers if

these motors are to be returned to a hazardous and/or explosive atmosphere.

WARNING: Pacemaker danger - Magnetic and electromagnetic fields in the vicinity of current carrying

carrying conductors and permanent magnet motors can result result in a serious health hazard to persons with cardiac pacemakers, metal implants, and hearing aids. To avoid risk, stay way from

the area surrounding a permanent magnet motor.

WARNING: Before performing any motor maintenance procedure, be sure that the equipment connected to

the motor shaft cannot cause shaft rotation. If the load can cause shaft rotation, disconnect the load from the motor shaft before maintenance is performed. Unexpected mechanical rotation of

the motor parts can cause injury or motor damage.

WARNING: Use only UL/CSA listed explosion proof motors in the presence of flammable or combustible

vapors or dust.

WARNING: Motors that are to be used in flammable and/or explosive atmospheres must display the UL label

on the nameplate along with CSA listed logo. Specific service conditions for these motors are

defined in NFPA 70 (NEC) Article 500.

WARNING: Guards must be installed for rotating parts such as couplings, pulleys, external fans, and unused

shaft extensions, should be permanently guarded to prevent accidental contact by personnel.

Accidental contact with body parts or clothing can cause serious or fatal injury.

Caution: To prevent premature equipment failure or damage, only qualified maintenance personnel should

perform maintenance.

Caution: Do not over-lubricate motor as this may cause premature bearing failure.

Caution: Do not over tension belts. Excess tension may damage the motor or driven equipment.

Caution: Do not lift the motor and its driven load by the motor lifting hardware. The motor lifting hardware

is adequate for lifting only the motor. Disconnect the load (gears, pumps, compressors, or other

driven equipment) from the motor shaft before lifting the motor.

Caution: If eye bolts are used for lifting a motor, be sure they are securely tightened. The lifting direction

should not exceed a 20° angle from the shank of the eye bolt or lifting lug. Excessive lifting

angles can cause damage.

Caution: To prevent equipment damage, be sure that the electrical service is not capable of delivering more

than the maximum motor rated amps listed on the rating plate.

Caution: If a HI POT test (High Potential Insulation test) must be performed, follow the precautions and

procedure in NEMA MG1 and MG2 standards to avoid equipment damage.

If you have any questions or are uncertain about any statement or procedure, or if you require additional

information please contact your Baldor distributor or an Authorized Baldor Service Center.

ReceivingEach Baldor Electric Motor is thoroughly tested at the factory and carefully packaged for shipment. When you receive your motor, there are several things you should do immediately.

 Observe the condition of the shipping container and report any damage immediately to the commercial carrier that delivered your motor.

2. Verify that the part number of the motor you received is the same as the part number listed on your

purchase order.

Handling

The motor should be lifted using the lifting lugs or eye bolts provided.

Caution: Do not lift the motor and its driven load by the motor lifting hardware. The motor lifting hardware is adequate for lifting only the motor. Disconnect the load (gears, pumps, compressors, or other driven equipment) from the motor shaft before lifting the motor.

- 1. Use the lugs or eye bolts provided to lift the motor. Never attempt to lift the motor and additional equipment connected to the motor by this method. The lugs or eye bolts provided are designed to lift only the motor. Never lift the motor by the motor shaft or the hood of a WPII motor.
- To avoid condensation inside the motor, do not unpack until the motor has reached room temperature. (Room temperature is the temperature of the room in which it will be installed).
 The packing provides insulation from temperature changes during transportation.
- 3. When lifting a WPII (Weather Proof Type 2) motor, do not lift the motor by inserting lifting lugs into holes on top of the cooling hood. These lugs are to be used for hood removal only. A spreader bar should be used to lift the motor by the cast lifting lugs located on the motor frame.

1-2 General Information MN400

4. If the motor must be mounted to a plate with the driven equipment such as pump, compressor etc., it may not be possible to lift the motor alone. For this case, the assembly should be lifted by a sling around the mounting base. The entire assembly can be lifted as an assembly for installation.

Do not lift the assembly using the motor lugs or eye bolts provided. Lugs or eye bolts are designed to lift motor only. If the load is unbalanced (as with couplings or additional attachments) additional slings or other means must be used to prevent tipping. In any event, the load must be secure before lifting. If the load is unbalanced (as with couplings or additional attachments) additional slings or other means must be used to prevent tipping. In any event, the load must be secure before lifting.

Storage

Storage requirements for motors and generators that will not be placed in service for at least six months from date of shipment.

Improper motor storage will result in seriously reduced reliability and failure. An electric motor that does not experience regular usage while being exposed to normally humid atmospheric conditions is likely to develop rust in the bearings or rust particles from surrounding surfaces may contaminate the bearings. The electrical insulation may absorb an excessive amount of moisture leading to the motor winding failure.

A wooden crate "shell" should be constructed to secure the motor during storage. This is similar to an export box but the sides & top must be secured to the wooden base with lag bolts (not nailed as export boxes are) to allow opening and reclosing many times without damage to the "shell".

Minimum resistance of motor winding insulation is 5 Meg ohms or the calculated minimum, which ever is greater. Minimum resistance is calculated as follows: $\mathbf{Rm} = \mathbf{kV} + \mathbf{1}$

where: (Rm is minimum resistance to ground in Meg-Ohms and kV is rated nameplate voltage defined as Kilo-Volts.)

Example: For a 480VAC rated motor Rm = 1.48 meg-ohms (use 5 $M\Omega$). For a 4160VAC rated motor Rm = 5.16 meg-ohms.

Preparation for Storage

- 1. Some motors have a shipping brace attached to the shaft to prevent damage during transportation. The shipping brace, if provided, must be removed and stored for future use. The brace must be reinstalled to hold the shaft firmly in place against the bearing before the motor is moved.
- 2. Store in a clean, dry, protected warehouse where control is maintained as follows:
 - a. Shock or vibration must not exceed 2 mils maximum at 60 hertz, to prevent the bearings from brinelling. If shock or vibration exceeds this limit vibration isolation pads must be used.
 - b. Storage temperatures of 10°C (50°F) to 49°C (120°F) must be maintained.
 - c. Relative humidity must not exceed 60%.
 - d. Motor space heaters (when present) are to be connected and energized whenever there is a possibility that the storage ambient conditions will reach the dew point. Space heaters are optional.

Note: Remove motor from containers when heaters are energized, reprotect if necessary.

- 3. Measure and record the resistance of the winding insulation (dielectric withstand) every 30 days of storage.
 - a. If motor insulation resistance decreases below the minimum resistance, contact your Baldor District office.
 - b. Place new desiccant inside the vapor bag and re-seal by taping it closed.
 - c. If a zipper-closing type bag is used instead of the heat-sealed type bag, zip the bag closed instead of taping it. Be sure to place new desiccant inside bag after each monthly inspection.
 - d. Place the shell over the motor and secure with lag bolts.
- 4. Where motors are mounted to machinery, the mounting must be such that the drains and breathers are fully operable and are at the lowest point of the motor. Vertical motors must be stored in the vertical position. Storage environment must be maintained as stated in step 2.

MN400 General Information 1-3

- 5. Motors with anti-friction bearings are to be greased at the time of going into extended storage with periodic service as follows:
 - a. Motors marked "Do Not Lubricate" on the nameplate do not need to be greased before or during storage.
 - b. Ball and roller bearing (anti-friction) motor shafts are to be rotated manually every 3 months and greased every 6 months in accordance with the Maintenance section of this manual.
 - c. Sleeve bearing (oil lube) motors are drained of oil prior to shipment. The oil reservoirs must be refilled to the indicated level with the specified lubricant, (see Maintenance). The shaft should be rotated monthly by hand at least 10 to 15 revolutions to distribute oil to bearing surfaces.
 - d. "Provisions for oil mist lubrication" These motors are packed with grease. Storage procedures are the same as paragraph 5b.
 - e. "Oil Mist Lubricated" These bearings are protected for temporary storage by a corrosion inhibitor. If stored for greater than 3 months or outdoor storage is anticipated, connected to the oil mist system while in storage. If this is not possible, add the amount of grease indicated under "Standard Condition" in Section 3, then rotate the shaft 15 times by hand.
- 6. All breather drains are to be fully operable while in storage (drain plugs removed). The motors must be stored so that the drain is at the lowest point. All breathers and automatic "T" drains must be operable to allow breathing and draining at points other than through the bearings around the shaft. Vertical motors should be stored in a safe stable vertical position.
- 7. Coat all external machined surfaces with a rust preventing material. An acceptable product for this purpose is Exxon Rust Ban # 392.

Non-Regreaseable Motors

Non-regreasable motors with "Do Not Lubricate" on the nameplate should have the motor shaft rotated 15 times to redistribute the grease within the bearing every 3 months or more often.

All Other Motor Types

Before storage, the following procedure must be performed.

- 1. Remove the grease drain plug, if supplied, (opposite the grease fitting) on the bottom of each bracket prior to lubricating the motor.
- 2. The motor with regreasable bearing must be greased as instructed in Section 3 of this manual.
- 3. Replace the grease drain plug after greasing.
- 4. The motor shaft must be rotated a minimum of 15 times after greasing.
- 5. Motor Shafts are to be rotated at least 15 revolutions manually every 3 months and additional grease added every nine months (see Section 3) to each bearing.
- 6. Bearings are to be greased at the time of removal from storage.

Removal From Storage

- 1. Remove all packing material.
- 2. Measure and record the electrical resistance of the winding insulation resistance meter at the time of removal from storage. The insulation resistance must not be less than 50% from the initial reading recorded when the motor was placed into storage. A decrease in resistance indicates moisture in the windings and necessitates electrical or mechanical drying before the motor can be placed into service. If resistance is low, contact your Baldor District office.
- 3. Regrease the bearings as instructed in Section 3 of this manual.
- 4. Reinstall the original shipping brace if motor is to be moved. This will hold the shaft firmly against the bearing and prevent damage during movement.

1-4 General Information MN400

Section 2 Installation & Operation

Overview

Installation should conform to the National Electrical Code as well as local codes and practices. When other devices are coupled to the motor shaft, be sure to install protective devices to prevent future accidents. Some protective devices include, coupling, belt guard, chain guard, shaft covers etc. These protect against accidental contact with moving parts. Machinery that is accessible to personnel should provide further protection in the form of guard rails, screening, warning signs etc.

Location

It is important that motors be installed in locations that are compatible with motor enclosure and ambient conditions. Improper selection of the motor enclosure and ambient conditions can lead to reduced operating life of the motor.

Proper ventilation for the motor must be provided. Obstructed airflow can lead to reduction of motor life.

- Open Drip-Proof/WPI motors are intended for use indoors where atmosphere is relatively clean, dry, well ventilated and non-corrosive.
- Totally Enclosed and WPII motors may be installed where dirt, moisture or dust are present and in outdoor locations.

Severe Duty, IEEE 841 and Washdown Duty enclosed motors are designed for installations with high corrosion or excessive moisture conditions. These motors should not be placed into an environment where there is the presence of flammable or combustible vapors, dust or any combustible material, unless specifically designed for this type of service.

Hazardous Locations are those where there is a risk of ignition or explosion due to the presence of combustible gases, vapors, dust, fibers, or flyings. Facilities requiring special equipment for hazardous locations are typically classified in accordance with local requirements. In the US market, guidance is provided by the National Electric Code.

Caution:

Do not lift the motor and its driven load by the motor lifting hardware. The motor lifting hardware is adequate for lifting only the motor. Disconnect the load (gears, pumps, compressors, or other driven equipment) from the motor shaft before lifting the motor.

Mounting

The motor must be securely installed to a rigid foundation or mounting surface to minimize vibration and maintain alignment between the motor and shaft load. Failure to provide a proper mounting surface may cause vibration, misalignment and bearing damage.

Foundation caps and sole plates are designed to act as spacers for the equipment they support. If these devices are used, be sure that they are evenly supported by the foundation or mounting surface.

After installation is complete and accurate alignment of the motor and load is accomplished, the base should be grouted to the foundation to maintain this alignment.

The standard motor base is designed for horizontal or vertical mounting. Adjustable or sliding rails are designed for horizontal mounting only. Consult your Baldor distributor or authorized Baldor Service Center for further information.

Alignment

Accurate alignment of the motor with the driven equipment is extremely important. The pulley, sprocket, or gear used in the drive should be located on the shaft as close to the shaft shoulder as possible. It is recommended to heat the pulley, sprocket, or gear before installing on the motor shaft. Forcibly driving a unit on the motor shaft will damage the bearings.

1. Direct Coupling

For direct drive, use flexible couplings if possible. Consult the drive or equipment manufacturer for more information. Mechanical vibration and roughness during operation may indicate poor alignment. Use dial indicators to check alignment. The space between coupling hubs should be maintained as recommended by the coupling manufacturer.

2. End-Play Adjustment

The axial position of the motor frame with respect to its load is also extremely important. The motor bearings are not designed for excessive external axial thrust loads. Improper adjustment will cause failure.

3. Pulley Ratio

The pulley ratio should not exceed 8:1.

Caution:

Do not over tension belts. Excess tension may damage the motor or driven equipment.

4. Belt Drive

Align sheaves carefully to minimize belt wear and axial bearing loads (see End-Play Adjustment). Belt tension should be sufficient to prevent belt slippage at rated speed and load. However, belt slippage may occur during starting.

Sleeve bearing motors are only suitable for coupled loads.

<u>Doweling & Bolting</u> After proper alignment is verified, dowel pins should be inserted through the motor feet into the foundation. This will maintain the correct motor position should motor removal be required. (Baldor motors are designed for doweling.)

- 1. Drill dowel holes in diagonally opposite motor feet in the locations provided.
- 2. Drill corresponding holes in the foundation.
- Ream all holes.
- 4. Install proper fitting dowels.
- 5. Mounting bolts must be carefully tightened to prevent changes in alignment. Use a flat washer and lock washer under each nut or bolt head to hold the motor feet secure. Flanged nuts or bolts may be used as an alternative to washers.

WARNING:

Guards must be installed for rotating parts such as couplings, pulleys, external fans, and unused shaft extensions, should be permanently guarded to prevent accidental contact by personnel. Accidental contact with body parts or clothing can cause serious or fatal injury.

Guarding

Guards must be installed for rotating parts such as couplings, pulleys, external fans, and unused shaft extensions. This is particularly important where the parts have surface irregularities such as keys, key ways or set screws. Some satisfactory methods of guarding are:

- 1. Covering the machine and associated rotating parts with structural or decorative parts of the driven equipment.
- 2. Providing covers for the rotating parts. Covers should be sufficiently rigid to maintain adequate guarding during normal service.

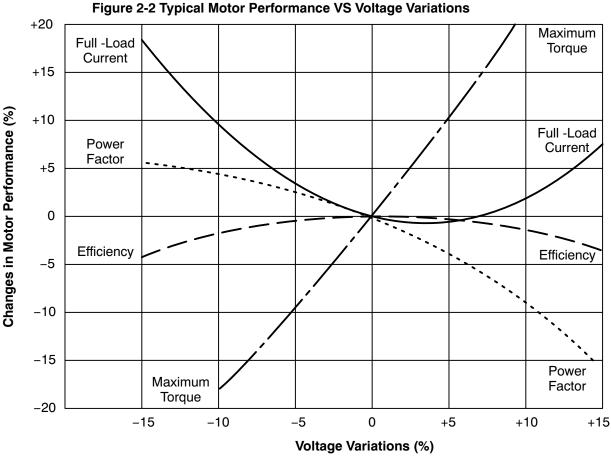
<u>Power Connection</u> Motor and control wiring, overload protection, disconnects, accessories and grounding should conform to the National Electrical Code and local codes and practices. Flying leads must be insulated with two full wraps of electrical grade insulating tape or heat shrink tubing.

Conduit Box For ease of making connections, an oversize conduit box is provided.

The box can be rotated 360° in 90° increments.

Auxiliary conduit boxes are provided on some motors for accessories such as space heaters, RTD's etc.

AC Power


Connect the motor leads as shown on the connection diagram located on the name plate or inside the cover on the conduit box. Be sure the following guidelines are met:

- 1. AC power is within $\pm 10\%$ of rated voltage with rated frequency. (See motor name plate for ratings). **OR**
- 2. AC power is within $\pm 5\%$ of rated frequency with rated voltage. **OR**
- 3. A combined variation in voltage and frequency of $\pm 10\%$ (sum of absolute values) of rated values, provided the frequency variation does not exceed $\pm 5\%$ of rated frequency.

Performance within these voltage and frequency variations are shown in Figure 2-2.

Figure 2-1 Accessory Connections

<u>HEATERS</u> H1 — √ √√ H2 H1 — √ √√ H2	One heater is installed in each end of motor. Leads for each heater are labeled H1 & H2. (Like numbers should be tied together).
THERMIS TORS T1 - WW - T2	Three thermistors are installed in windings and tied in series. Leads are labeled T1 & T2.
WINDING RTDS RED RED WHITE	Winding RTDs are installed in windings (2) per phase. Each set of leads is labeled W1, W2, W3, W4, W5, & W6.
BEARING RTD RED RED WHITE	 * One bearing RTD is installed in Drive endplate (PUEP), leads are labeled RTDDE. * One bearing RTD is installed in Opposite Drive endplate (FREP), leads are labeled RTDODE. * Note RTD may have 2-Red/1-White leads; or 2-White/1-Red Lead.

Rotation

All three phase motors are reversible. To reverse the direction of rotation, disconnect and lock out power and interchange any two of the three line leads for three phase motors. For single phase motors, check the connection diagram to determine if the motor is reversible and follow the connection instructions for lead numbers to be interchanged. Not all single phase motors are reversible.

Adjustable Frequency Power Inverters used to supply adjustable frequency power to induction motors produce wave forms with lower order harmonics with voltage spikes superimposed. Turn-to-turn, phase-to-phase, and ground insulation of stator windings are subject to the resulting dielectric stresses. Suitable precautions should be taken in the design of these drive systems to minimize the magnitude of these voltage spikes. Consult the drive instructions for maximum acceptable motor lead lengths, and proper grounding.

First Time Start Up Be sure that all power to motor and accessories is off. Be sure the motor shaft is disconnected from the load and will not cause mechanical rotation of the motor shaft.

- 1. Make sure that the mechanical installation is secure. All bolts and nuts are tightened etc.
- 2. If motor has been in storage or idle for some time, check winding insulation integrity.
- 3. Inspect all electrical connections for proper termination, clearance, mechanical strength and electrical continuity.
- 4. Be sure all shipping materials and braces (if used) are removed from motor shaft.
- 5. Manually rotate the motor shaft to ensure that it rotates freely.
- 6. Replace all panels and covers that were removed during installation.
- 7. Momentarily apply power and check the direction of rotation of the motor shaft.
- 8. If motor rotation is wrong, be sure power is off and change the motor lead connections. Verify rotation direction before you continue.
- 9. Start the motor and ensure operation is smooth without excessive vibration or noise. If so, run the motor for 1 hour with no load connected.
- 10. After 1 hour of operation, disconnect power and connect the load to the motor shaft. Verify all coupling guards and protective devices are installed. Ensure motor is properly ventilated.

<u>Coupled Start Up</u> This procedure assumes a coupled start up. Also, that the first time start up procedure was successful.

- 1. Check the coupling and ensure that all guards and protective devices are installed.
- Check that the coupling is properly aligned and not binding.
- 3. The first coupled start up should be with no load. Apply power and verify that the load is not transmitting excessive vibration back to the motor though the coupling or the foundation. Vibration should be at an acceptable level.
- 4. Run for approximately 1 hour with the driven equipment in an unloaded condition.

The equipment can now be loaded and operated within specified limits. Do not exceed the name plate ratings for amperes for steady continuous loads.

<u>Jogging and Repeated Starts</u> Repeated starts and/or jogs of induction motors generally reduce the life of the motor winding insulation. A much greater amount of heat is produced by each acceleration or jog than by the same motor under full load. If it is necessary to repeatedly start or jog the motor, it is advisable to check the application with your local Baldor distributor or Baldor Service Center.

Heating - Duty rating and maximum ambient temperature are stated on the motor name plate. Do not exceed these values. If there is any question regarding safe operation, contact your local Baldor District Office or Baldor Service Center.

Section 3 Maintenance & Troubleshooting

WARNING: UL Listed motors must only be serviced by UL Approved Authorized Baldor Service Centers if these motors are to be returned to a hazardous and/or explosive atmosphere.

<u>General Inspection</u> Inspect the motor at regular intervals, approximately every 500 hours of operation or every 3 months, whichever occurs first. Keep the motor clean and the ventilation openings clear. The following steps should be performed at each inspection:

WARNING:

Do not touch electrical connections before you first ensure that power has been disconnected. Electrical shock can cause serious or fatal injury. Only qualified personnel should attempt the installation, operation and maintenance of this equipment.

- Check that the motor is clean. Check that the interior and exterior of the motor is free of dirt, oil, grease, water, etc. Oily vapor, paper pulp, textile lint, etc. can accumulate and block motor ventilation. If the motor is not properly ventilated, overheating can occur and cause early motor failure.
- Use a "Megger" periodically to ensure that the integrity of the winding insulation has been maintained. Record the Megger readings. Immediately investigate any significant drop in insulation resistance.
- 3. Check all electrical connectors to be sure that they are tight.

Relubrication & Bearings

Bearing grease will lose its lubricating ability over time, not suddenly. The lubricating ability of a grease (over time) depends primarily on the type of grease, the size of the bearing, the speed at which the bearing operates and the severity of the operating conditions. Good results can be obtained if the following recommendations are used in your maintenance program.

Type of Grease A high grade ball or roller bearing grease should be used. Recommended grease for standard service conditions is **Polyrex EM (Mobil)**. Do not mix greases unless compatibility has been checked and verified.

Equivalent and compatible greases include:

Texaco Polystar, Rykon Premium #2, Pennzoil Pen 2 Lube and Chevron SRI.

Relubrication Intervals Recommended relubrication intervals are shown in Table 3-1. It is important to realize that the recommended intervals of Table 3-1 are based on average use.

Refer to additional information contained in Tables 3-2, 3-3 and 3-4.

Table 3-1 Relubrication Intervals *

	Rated Speed - RPM					
NEMA / (IEC) Frame Size	10000	6000	3600	1800	1200	900
Up to 210 incl. (132)	**	2700 Hrs.	5500 Hrs.	12000 Hrs.	18000 Hrs.	22000 Hrs.
Over 210 to 280 incl. (180)		**	3600 Hrs.	9500 Hrs.	15000 Hrs.	18000 Hrs.
Over 280 to 360 incl. (225)		**	* 2200 Hrs.	7400 Hrs.	12000 Hrs.	15000 Hrs.
Over 360 to 5800 incl. (300)		**	*2200 Hrs.	3500 Hrs.	7400 Hrs.	10500 Hrs.

Relubrication intervals are for ball bearings.
 For vertically mounted motors and roller bearings, divide the relubrication interval by 2.

^{**} For motors operating at speeds greater than 3600 RPM, contact Baldor for relubrication recommendations.

Table 3-2 Service Conditions

Severity of Service	Hours per day of Operation	Ambient Temperature Maximum	Atmospheric Contamination
Standard	8	40° C	Clean, Little Corrosion
Severe	16 Plus	50° C	Moderate dirt, Corrosion
Extreme	16 Plus	>50° C* or Class H Insulation	Severe dirt, Abrasive dust, Corrosion, Heavy Shock or Vibration
Low Temperature		<-29° C **	

^{*} Special high temperature grease is recommended (Dow Corning DC44). Note that Dow Corning DC44 grease does not mix with other grease types. Thoroughly clean bearing & cavity before adding grease.

Table 3-3 Relubrication Interval Multiplier

Severity of Service	Multiplier
Standard	1.0
Severe	0.5
Extreme	0.1
Low Temperature	1.0

Some motor designs use different bearings on each motor end. This is normally indicated on the motor nameplate. In this case, the larger bearing is installed on the motor Drive endplate. For best relubrication results, only use the appropriate amount of grease for each bearing size (not the same for both).

Table 3-4 Bearings Sizes and Types

Frame Size	Bearing Description (These are the "Large" bearings (Shaft End) in each frame size)					
NEMA (IEC)	Bearing	Weight of Grease to add *	Volume of grease to be added			
		oz (Grams)	in ³	teaspoon		
56 to 140 (90)	6203	0.08 (2.4)	0.15	0.5		
140 (90)	6205	0.15 (3.9)	0.2	0.8		
180 (100–112)	6206	0.19 (5.0)	0.3	1.0		
210 (132)	6307	0.30 (8.4)	0.6	2.0		
250 (160)	6309	0.47 (12.5)	0.7	2.5		
280 (180)	6311	0.61 (17)	1.2	3.9		
320 (200)	6312	0.76 (20.1)	1.2	4.0		
360 (225)	6313	0.81 (23)	1.5	5.2		
400 (250)	6316	1.25 (33)	2.0	6.6		
440 (280)	6319	2.12 (60)	4.1	13.4		
5000 to 5800 (315-450)	6328	4.70 (130)	9.2	30.0		
5000 to 5800 (315-450)	NU328	4.70 (130)	9.2	30.0		
360 to 449 (225-280)	NU319	2.12 (60)	4.1	13.4		
AC Induction Servo						
76 Frame 180 (112)	6207	0.22 (6.1)	0.44	1.4		
77 Frame 210 (132)	6210	0.32 (9.0)	0.64	2.1		
80 Frame 250(160)	6213	0.49 (14.0)	0.99	3.3		

Weight in grams = .005 DB of grease to be added

Note: Not all bearing sizes are listed. For intermediate bearing sizes, use the grease volume for the next larger size bearing.

^{**} Special low temperature grease is recommended (Aeroshell 7).

Caution: To avoid damage to motor bearings, grease must be kept free of dirt. For an extremely dirty environment, contact your Baldor distributor or an authorized Baldor Service Center for additional information.

Relubrication Procedure Be sure that the grease you are adding to the motor is compatible with the grease already in the motor. Consult your Baldor distributor or an authorized service center if a grease other than the recommended type is to be used.

Caution: Do not over-lubricate motor as this may cause premature bearing failure.

With Grease Outlet Plug

- 1. With the motor stopped, clean all grease fittings with a clean cloth.
- Remove grease outlet plug.

Caution: Over-lubricating can cause excessive bearing temperatures, premature lubrication breakdown and bearing failure.

- 3. Add the recommended amount of grease.
- 4. Operate the motor for 15 minutes with grease plug removed. This allows excess grease to purge.
- 5. Re-install grease outlet plug.

Without Grease Provisions

Note: Only a Baldor authorized and UL or CSA certified service center can disassemble a UL/CSA listed explosion proof motor to maintain it's UL/CSA listing.

- 1. Disassemble the motor.
- 2. Add recommended amount of grease to bearing and bearing cavity. (Bearing should be about 1/3 full of grease and outboard bearing cavity should be about 1/2 full of grease.)
- 3. Assemble the motor.

Sample Relubrication Determination

Assume - NEMA 286T (IEC 180), 1750 RPM motor driving an exhaust fan in an ambient temperature of 43° C and the atmosphere is moderately corrosive.

- 1. Table 3-1 list 9500 hours for standard conditions.
- 2. Table 3-2 classifies severity of service as "Severe".
- 3. Table 3-4 shows that 1.2 in³ or 3.9 teaspoon of grease is to be added.

Note: Smaller bearings in size category may require reduced amounts of grease.

Table 3-5 <u>Troubleshooting Chart</u>

Symptom	Possible Causes	Possible Solutions
Motor will not start	Usually caused by line trouble, such	Check source of power. Check overloads, fuses,
	as, single phasing at the starter.	controls, etc.
Excessive humming	High Voltage.	Check input line connections.
	Eccentric air gap.	Have motor serviced at local Baldor service center.
Motor Over Heating	Overload. Compare actual amps	Locate and remove source of excessive friction in
	(measured) with nameplate rating.	motor or load.
		Reduce load or replace with motor of greater capacity.
	Single Phasing.	Check current at all phases (should be approximately
		equal) to isolate and correct the problem.
	Improper ventilation.	Check external cooling fan to be sure air is moving
		properly across cooling fins.
	Linkalanaad valtaaa	Excessive dirt build-up on motor. Clean motor.
	Unbalanced voltage.	Check voltage at all phases (should be approximately equal) to isolate and correct the problem.
	Dotor rubbing on stator	Check air gap clearance and bearings.
	Rotor rubbing on stator.	
	Over veltere en verden veltere	Tighten "Thru Bolts".
	Over voltage or under voltage.	Check input voltage at each phase to motor.
	Open stator winding.	Check stator resistance at all three phases for balance.
	Grounded winding	
	Grounded winding. Improper connections.	Perform dielectric test and repair as required. Inspect all electrical connections for proper
	improper connections.	termination, clearance, mechanical strength and
		electrical continuity. Refer to motor lead connection
		diagram.
Bearing Over Heating	Misalignment.	Check and align motor and driven equipment.
	Excessive belt tension.	Reduce belt tension to proper point for load.
	Excessive end thrust.	Reduce the end thrust from driven machine.
	Excessive grease in bearing.	Remove grease until cavity is approximately 3/4 filled.
	Insufficient grease in bearing.	Add grease until cavity is approximately 3/4 filled.
	Dirt in bearing.	Clean bearing cavity and bearing. Repack with correct
		grease until cavity is approximately $3/4$ filled.
Vibration	Misalignment.	Check and align motor and driven equipment.
	Rubbing between rotating parts and	Isolate and eliminate cause of rubbing.
	stationary parts.	
	Rotor out of balance.	Have rotor balance checked are repaired at your
		Baldor Service Center.
	Resonance.	Tune system or contact your Baldor Service Center
		for assistance.
Noise	Foreign material in air gap or	Remove rotor and foreign material. Reinstall rotor.
	ventilation openings.	Check insulation integrity. Clean ventilation openings.
Growling or whining	Bad bearing.	Replace bearing. Clean all grease from cavity and
		new bearing. Repack with correct grease until cavity
		is approximately $^3/_4$ filled.

Suggested bearing and winding RTD setting guidelines

Most large frame AC Baldor motors with a 1.15 service factor are designed to operate below a Class B (80°C) temperature rise at rated load and are built with a Class H winding insulation system. Based on this low temperature rise, RTD (Resistance Temperature Detectors) settings for Class B rise should be used as a starting point. Some motors with 1.0 service factor have Class F temperature rise.

The following tables show the suggested alarm and trip settings for RTDs. Proper bearing and winding RTD alarm and trip settings should be selected based on these tables unless otherwise specified for specific applications.

If the driven load is found to operate well below the initial temperature settings under normal conditions, the alarm and trip settings may be reduced so that an abnormal machine load will be identified.

The temperature limits are based on the installation of the winding RTDs imbedded in the winding as specified by NEMA. Bearing RTDs should be installed so they are in contact with the outer race on ball or roller bearings or in direct contact with the sleeve bearing shell.

Winding RTDs – Temperature Limit I	n °C	(40°C	Maximum	Ambient)
------------------------------------	------	-------	---------	----------

Motor Load		Class B Temp Rise ≤ 80°C (Typical Design)		Class F Temp Rise ≤ 105°C		Rise ≤ 125°C
	Alarm	Trip	Alarm	Trip	Alarm	Trip
≤ Rated Load	130	140	155	165	175	185
Rated Load to 1.15 S.F.	140	150	160	165	180	185

Note: • Winding RTDs are factory production installed, not from Mod-Express.

• When Class H temperatures are used, consider bearing temperatures and relubrication requirements.

Bearing RTDs - Temperature Limit In °C (40°C Maximum Ambient)

Bearing Type Anti-Fric		riction	Sle	eve
Oil or Grease	Alarm	Trip	Alarm	Trip
Standard*	95	100	85	95
High Temperature**	110	115	105	110

Note: * Bearing temperature limits are for standard design motors operating at Class B temperature rise.

Greases that may be substituted that are compatible with Polyrex EM (but considered as "standard" lubricants) include the following:

Texaco Polystar
 Mobilith SHC-100
 Pennzoil Pennzlube EM-2
 Darmex 707
 Rykon Premium #2
 Chevron SRI #2
 Chevron Black Pearl
 Petro-Canada Peerless LLG

See the motor nameplate for replacement grease or oil recommendation.

Contact Baldor application engineering for special lubricants or further clarifications.

^{**} High temperature lubricants include some special synthetic oils and greases.

Baldor District Offices

UNITED STATES ARIZONA

PHOENIX 4211 S 43RD PLACE PHOENIX, AZ 85040 PHONE: 602-470-0407 FAX: 602-470-0464

ARKANSAS

CLARKSVILLE 1001 COLLEGE AVE. CLARKSVILLE, AR 72830 PHONE: 479-754-9108 FAX: 479-754-9205

CALIFORNIA

LOS ANGELES 6480 FLOTILLA COMMERCE, CA 90040 PHONE: 323-724-6771 FAX: 323-721-5859 HAYWARD 21056 FORBES STREET HAYWARD, CA 94545 PHONE: 510-785-9900 FAX: 510-785-9910

COLORADO

DENVER 3855 FOREST STREET DENVER, CO 80207 PHONE: 303-623-0127 FAX: 303-595-3772 9980 PARK MEADOWS DRIVE SUITE 214 LONE TREE. CO 80124-6739 PHONE: 303-339-9629 FAX: 303-339-9633

CONNECTICUT

WALLINGFORD 65 SOUTH TURNPIKE ROAD WALLINGFORD, CT 06492 PHONE: 203-269-1354 FAX: 203-269-5485

FLORIDA

TAMPA/PUERTO RICO/ YIRGIN ISLANDS
3906 EAST 117H AVENUE
TAMPA, FL 33605
PHONE: 813-248-5078
FAX: 813-247-2984

GEORGIA ATLANTA 62 TECHNOLOGY DR.

ALPHARETTA, GA 30005 PHONE: 770-772-7000 FAX: 770-772-7200 5490 MCGINNIS FERRY PLACE SUITE 133 ALPHARETTA, GA 30005 PHONE: 770-752-4254

ILLINOIS

CHICAGO 4 SAMMONS COURT BOLINGBROOK, IL 60440 PHONE: 630-296-1400 FAX: 630-226-9420

FAX: 770-752-4257

INDIANA

COLUMBUS 3300 TENTH ST COLUMBUS, IN 47201 PHONE: 812-378-2556 FAX: 812-378-2555 INDIANAPOLIS 5525 W. MINNESOTA STREET INDIANAPOLIS, IN 46241 PHONE: 317-246-5100 FAX: 317-246-5110

IOWA

DES MOINES 1800 DIXON STREET, SUITE C DES MOINES, IA 50316 PHONE: 515-263-6929 FAX: 515-263-6515

KANSAS

5030 BOB BILLINGS PKWY STE B LAWRENCE, KS 66049 PHONE: 785-749-4339 FAX: 785-749-4217

MARYI AND

BALTIMORE 6660 SANTA BARBARA RD. SUITE 22-24 ELKRIDGE, MD 21075 PHONE: 410-579-2135 FAX: 410-579-2677

MASSACHUSETTS

BOSTON 6 PULLMAN STREET WORCESTER, MA 01606 PHONE: 508-854-0708 FAX: 508-854-0291

MICHIGAN

DETROIT 33782 STERLING PONDS BLVD. STERLING HEIGHTS, MI 48312 PHONE: 586-978-9800 FAX: 586-978-9969 GRAND RAPIDS 668 THREE MILE ROAD NW GRAND RAPIDS, MI 49504

MINNESOTA

MINNEAPOLIS 21080 134TH AVE. NORTH ROGERS, MN 55374 PHONE: 763-428-3633 FAX: 763-428-4551

PHONE: 616-785-1784 FAX: 616-785-1788

MISSOURI

ST LOUIS 422 INDUSTRIAL DRIVE MARYLAND HEIGHTS, MO 63043 PHONE: 314-298-1800 FAX: 314-298-7660 KANSAS CITY 1501 BEDFORD AVENUE NORTH KANSAS CITY, MO 64116 PHONE: 816-587-0272 FAX: 816-587-3735

NEW YORK

AUBURN ONE ELLIS DRIVE AUBURN, NY 13021 PHONE: 315-255-3403 FAX: 315-253-9923

NORTH CAROLINA

GREENSBORO 1220 ROTHERWOOD ROAD GREENSBORO, NC 27406 PHONE: 336-272-6104 FAX: 336-273-6628

OHIO

CINCINNATI 2929 CRESCENTVILLE ROAD WEST CHESTER, OH 45069 PHONE: 513-771-2600 FAX: 513-772-2219 CLEVELAND 8929 FREEWAY DRIVE MACEDONIA, OH 44056 PHONE: 330-468-4777 FAX: 330-468-4778 29525 CHAGRIN BLVD SUITE 208 CLEVELAND, OH 44122 PHONE: 216-360-8296 FAX: 216-360-4172

OKLAHOMA

TULSA 2 EAST DAWES BIXBY, OK 74008 PHONE: 918-366-9320 FAX: 918-366-9338

OREGON

PORTLAND 20393 SW AVERY COURT TUALATIN, OR 97062 PHONE: 503-691-9010 FAX: 503-691-9012

PENNSYLVANIA

KING OF PRUSSIA 1060 FIRST AVE STE 400 KING OF PRUSSIA, PA 19406 PHONE: 610-768-8018 FAX: 215-672-5759

PHII ADEI PHIA 1035 THOMAS BUSCH MEMORIAL HIGHWAY PENNSAUKEN, NJ 08110 PHONE: 856-661-1442

FAX: 856-663-6363 PITTSBURGH 159 PROMINENCE DRIVE NEW KENSINGTON, PA 15068 PHONE: 724-889-0092 FAX: 724-889-0094

TENNESSEE

MEMPHIS 4000 WINCHESTER ROAD MEMPHIS, TN 38118 PHONE: 901-365-2020 FAX: 901-365-3914

TFXAS

ADDISON ADDISON 3939 BELT LINE ROAD #250 ADDISON, TX 75001 PHONE: 972-499-7746, 499-7747 FAX: 972-242-1505 DALLAS 3040 QUEBEC

DALLAS, TX 75247 PHONE: 214-634-7271 FAX: 214-634-8874 HOUSTON 4647 PINE TIMBERS SUITE # 135 HOUSTON, TX 77041 PHONE: 713-895-7062 FAX: 713-690-4540

UTAH

SALT LAKE CITY 2230 SOUTH MAIN STREET SALT LAKE CITY, UT 84115 PHONE: 801-832-0127 FAX: 801-832-8911

VIRGINIA

RICHMOND RICHMOND 6767 FOREST HILL AVE STE 305 RICHMOND, VA 23225 PHONE: 804-545-6848 FAX: 804-545-6840

WASHINGTON

KIRKLAND, WA 550 KIRKLAND WAY STE 205 KIRKLAND, WA 98033 PHONE: 425-952-5000 FAX: 775-255-8019

WISCONSIN

MILWAUKEE 2725 SOUTH 163RD STREET NEW BERLIN, WI 53151 PHONE: 262-784-5940 FAX: 262-784-1215 WAUKESHA N14 W23777 STONE RIDGE DRIVE SUITE 170 WAUKESHA, WI 53188 PHONE: 262-347-2000 FAX: 262-437-0258

INTERNATIONAL SALES

FORT SMITH, AR P.O. BOX 2400 FORT SMITH, AR 72902 PHONE: 479-646-4711 FAX: 479-648-5895

CANADA EDMONTON, ALBERTA 4053-92 STREET EDMONTON, ALBERTA T6E 6R8 PHONE: 780-434-4900 FAX: 780-438-2600 11428-168 STREET EDMONTON, ALBERTA T5M 3T9 PHONE: 780-822-7865 FAX: 780-822-7878 MISSISSAUGA, ONTARIO 244 BRITANNIA ROAD EAST MISSISSAUGA, ONTARIO L4Z 1S6 PHONE: 905-890-5110 FAX: 905-890-5540

OAKVILLE ONTARIO 2750 COVENTRY ROAD OAKVILLE, ONTARIO L6H 6R1 PHONE: 905-829-3301 FAX: 905-829-3302 DORVAL, QUEBEC

95 RUE LINDSAY DORVAL QUEBEC H9P 2S6 PHONE: 514-422-8818 FAX: 514-422-8982

MONTREAL, QUEBEC

1844 WILLIAM STREET MONTREAL, QUEBEC H3J 1R5 PHONE: 514-933-2711 FAX: 514-933-8639 VANCOUVER, BRITISH COLUMBIA 1538 KEBET WAY PORT COQUITLAM. BRITISH COLUMBIA V3C 5M5 PHONE 604-421-2822 FAX: 604-421-3113

WINNIPEG, MANITOBA 54 PRINCESS STREET WINNIPEG, MANITOBA R3B 1K2 PHONE: 204-942-5205 FAX: 204-956-4251

AUSTRALIA

UNIT 3, 6 STANTON ROAD SEVEN HILLS, NSW 2147, AUSTRALIA PHONE: (61) (2) 9674 5455 FAX: (61) (2) 9674 2495 UNIT 8, 5 KELLETTS ROAD ROWVILLE, VICTORIA, 3178 AUSTRALIA PHONE: (61) (3) 9753 4355 FAX: (61) (3) 9753 4366

EL SALVADOR

RESIDENCIAL PINARES DE SUIZA POI 15#44 NVA. SAN SALVADOR, EL SALVADOR PHONE: +503 2288-1519 FAX: +503 2288-1518

CHII F

LUIS THAYER OJEDA 166, OF 402 – PROVIDENCIA SANTIAGO, CHILE PHONE: 56-2-290-0762 FAX: 56-2-290-0762

CHINA

5299 BEI SONG ROAD SONGJIANG 201611 SHANGHAI, CHINA PHONE: +86 21 5760 5335 FAX: +86 21 5760 5336 UNIT 905, 9TH FLOOR, TOWER B WANDA PLAZA NO. 93 JIANGUO ROAD, CHAOYANG DISTRICT BEIJING, 100022, CHINA PHONE +86 (010) 58205516 FAX +86 (010) 58204231

GERMANY

DIESELSTRASSE 22 D-85551 KIRCHHEIM MUNICH, GERMANY PHONE: +49 89 90 5080 FAX: +49 89 90 50 8492 HERMANN-HEINRICH-GOSSEN-STRASSE 3 D-50858 KÖLN, GERMANY PHONE: 49 2234 37941 0

FAX: 49 2234 37941 64

INDIA

14. COMMERCE AVENUE MAHAGANESH COLONY PAUD ROAD PUNE – 411038 MAHARASHTRA, INDIA PHONE: 91 20 25452717, 25452718 FAX: 91 20 25452719

ITAI Y

BALDOR ASR AG SUCCURSALE DI MENDRISIO VIA BORROMINI, 20A CH-6850 MENDRISIO SWITZERLAND PHONE: 0041 91 640 99 50 FAX: 0041 91 630 26 33

JAPAN

DIA BLDG 802, LIA BLUG 8UZ, 2-21-1 TSURUYA-CHO, KANAGAWA-KU YOKOHAMA, 221-0835, JAPAN PHONE: 81-45-412-4506 FAX: 81-45-412-4507

KOREA

RM 1715, SUSEO TOWER, 725, SUSEO-DONG, GANGNAM-GU, SEOUL 135-757 KOREA TEL: (82) 2 2226 9369 FAX: (82) 2 2226 9368

MEXICO

LEON, GUANAJUATO KM. 2.0 BLVD. AEROPUERTO LEÓN 37545, GUANAJUATO, MÉXICO PHONE: 52 477 761 2030 FAX: 52 477 761 2010

MIDDLE EAST & NORTH AFRICA

VSE INTERNATIONAL CORP P. O. BOX 5618 BUFFALO GROVE, IL 60089-5618 PHONE: 847 590 5547 FAX: 847 590 5587

SINGAPORE

18, KAKI BUKIT ROAD 3 #03-09 ENTREPRENEUR BUSINESS CENTRE SINGAPORE 415978 PHONE: (65) 6744 2572 FAX: (65) 6747 1708

PANAMA

AVE. RICARDO J. ALFARO EDIFICIO SUN TOWERS MALL PISO 2, LOCAL 55 CIUDAD DE PANAMÁ, PANAMÁ PHONE: +507 236-5155 FAX: +507 261-5355

SWITZERLAND

POSTFACH 73 SCHUTZENSTRASSE 59 CH-8245 FEUERTHALEN SWITZERLAND PHONE: +41 52 647 4700 FAX: +41 52 659 2394

TAIWAN

1F, NO 126 WENSHAN 3RD STREET, NANTUN DISTRICT, TAICHUNG CITY 408 TAIWAN R.O.C PHONE: (886) 4 238 04235 FAX: (886) 4 238 04463

UNITED KINGDOM

6 BRISTOL DISTRIBUTION PARK HAWKLEY DRIVE BRISTOL BS32 0BF U.K. PHONE: +44 1454 850000 FAX: +44 1454 859001

VENEZUELA

AV. ROMA. QTA EL MILAGRO. URB. CALIFORNIA NORTE CARACAS, 1070 VENEZUELA PHONE: 58-414-114-8623 FAX: 58-412-322-5790

BALDOR ELECTRIC COMPANY
World Headquarters
P.O. Box 2400 Fort Smith, AR 72901–2400
(479) 646–4711 Fax (479) 648–5792
www.baldor.com